intelligent AI solutions for hyperspectral imaging

By admin

intelligent AI solutions in hyperspectral imaging Heinrich Grüger is a physicist, holds a doctorate in materials science and works in the OASYS project in the hyperspectral imaging cluster as lead project manager at the IPMS in Dresden and Cottbus. He has been developing sensors and sensor systems at the Fraunhofer IPMS (Institute for Photonic Microsystems) for over 25 years and has a personal passion for optical spectroscopy, particularly in the near-infrared (NIR) spectral range. This is the range that can no longer be seen with the normal eye, but which is used in everyday life for information transmission, e.g. in TV remote controls.   “I always find it super exciting when our microsystems technology, i.e. the smallest objects and nanometer-thin layers, meet the real world ” Scientist Heinrich Grüger explaining his work at the Long Night of Science in Dresden The well-researched method of NIR spectroscopy can be used to carry out application-oriented real-time measurements in areas such as food quality, health care or textile recycling. >> Every stain, every fabric, every object has a specific spectral fingerprint  << So what is so special about hyperspectral imaging? Heinrich Grüger explains it to me using an example. If you take a photo of any object with a cell phone, e.g. a T-shirt, it is reproduced on the cell phone display in digital pixels, using the associated color information RGB (red, green, blue). With hyperspectral imaging, on the other hand, the chemical composition of each pixel is also obtained (chemical sensing). This is made possible by near-infrared spectroscopy, in which hundreds of wavelengths are measured simultaneously (so-called spectral channels). The information read out from the wavelengths can now be assigned to each pixel, thus indicating the composition. Each chemical compound has a specific spectral fingerprint. This makes it possible to measure whether a T-shirt is made of cotton or polyester fibers and the corresponding properties can be determined (washable at 40 or 60 degrees). Quite useful if the label on the shirt is missing or no longer legible. Stains on items of clothing can also be identified using this method. >> New fields of application in recycling are opened up by reducing time and costs << With the OASYS project, Heinrich Grüger is now working on an intelligent AI-supported solution for hyperspectral imaging in order to reduce the amount of data collected to a minimum. The composition of a T-shirt does not have to be recorded everywhere. A few measuring points are sufficient, which saves time and drastically reduces the associated costs. >> This new, smarter technology makes it easy to revolutionize many existing and future recycling processes << In the sub-project “A1 intelligent ultra-compact hyperspectral camera”, hardware and software for the compact near-infrared spectrometer are developed as well as the artificial intelligence with corresponding decision algorithms for spectral analysis. The relevant information is extracted from all measurement data, evaluated internally and displayed in a user-friendly way. In the recycling process, this technology is very useful for deciding whether the textile gets a second chance for further use (reuse), whether it belongs in recycling – where the fibers are recovered – or whether it is so used up that it can ultimately only be disposed of or incinerated. >> Better decisions are made on the basis of measured knowledge << With other objects and decision-making processes, for example in fruit sorting plants, algorithms can be used to decide in real time whether the freshly harvested apple is suitable for display in the supermarket or whether it would perhaps be better delivered to the cidery for juice production. Internal bruises in fruit and vegetables can be invisible to the naked eye from the outside, but with harmless near-infrared spectroscopy they become clearly visible. >> The research and development opportunities in the OASYS project fascinate me because the topics are so closely linked to everyday life << Fruit sorting is a particularly good field of application where you can make a contribution. In a short period of 5-8 years, the technology developed will move from the laboratory into everyday life. New technical solutions ultimately enable a targeted contribution to socially relevant topics, such as reducing food waste, avoiding waste or minimizing CO2 emissions.   Heinrich Grüger has been enthusiastic about this at Fraunhofer right from the start. He can work scientifically here and has the opportunity to implement his own ideas. He is delighted to experience his own technological developments in real-life applications. Personally, he is most interested in how the individual sensors developed and, in future, the combination of different sensors with the help of AI can create added value in order to open up new fields of application and thus solve everyday or special problems. >> I would like to explain the topic of MEMS in a child-friendly way on “Sendung mit der Maus”  << Heinrich Grüger has been involved in promoting young talent for a very long time and very intensively. His intention is to get children and young people interested in science and technology as early as possible. One of his dreams is to explain the topic of MEMS (micro-electro-mechanical systems) in a child-friendly way on the “Sendung mit der Maus” TV show, which he really likes because of the simple way it conveys knowledge, in order to get others interested in the topic of microsystems technology.   Application examples Apple sorting Easier quality control with intelligent portable spectrometer: Bruises become visible without damaging the fruit All Posts eng Nicht kategorisiert project A1 hyperspectral ultra compact AI camera read more Background & expertise OASYS Cluster A: hyperspectral imaging  By researching promising sensory components, the OASYS project is creating the basis for new technologies in a variety of innovative fields of application that drive the development of better processes, e.g. in the medical field of gentle (non-invasive) examination methods, machine-aided industrial production, optimized process technology, intelligent recycling, modern agricultural production, smart mobility applications and consumer electronics. Read more All Work /Interview Intelligente KI Lösung für die hyperspektrale Bildaufnahme Use cases All Work…

B1 imaging in scattering media based on MEMS technology

By admin

Diese Seite befindet sich noch im Aufbau. hyperfine imaging in scattering media based on MEMS technology Imaging in and through scattering media is of immediate interest in biomedical research through to everyday clinical practice. In living tissue, the scattering and absorption of light by various molecules such as hemoglobin, pigments or water results in signal attenuation and a limited imaging depth caused by the distortion of the amplitude and phase of the (light) wave. Light scattering works in a similar way with a pane of frosted glass, which obstructs and distorts our vision (see image). Technologically advanced light modulators (SLM) can correct the light distortion and restore the original image. An example of a biomedical application for image acquisition using scattering media is deep tissue imaging. In this process, optical information is obtained from deep tissue layers, normal and diseased tissue can be distinguished, as can cell types, biomarker profiles, biological structures and processes in living organisms. scattering media viewlight modulation with SLM Research & development for different use cases In the medical field, endoscopy is one of the most important imaging methods for human medical diagnostics and for carrying out minimally invasive surgical procedures. Endoscopy means “looking at the inside”. The use of modern optical procedures and digitalization have been driving the technological development of medical endoscopy for many years. Even the smallest findings in the millimetre range can be detected and characterized thanks to the high image resolution. The use of light of different wavelengths helps to obtain important information on the vascular supply of the mucous membranes, which was otherwise only possible through surgery with tissue removal. Endoscopic micro-optics also allow a digital view into tiny duct systems (bile duct, pancreatic duct). light with different wavelength deep tissue image SLM spatial light modulator As described above, a fundamental requirement for imaging in and through scattering media is to control the intensity and phase of the light as quickly and precisely as possible. Our key components for this are so-called spatial light modulators (SLM), programmable components that are used to adjust the optical wavefront of the light Figure right. In combination with endoscopes, they allow an even more precise view behind vessel walls and into tissue layers without damaging or injuring them. The range of applications for MEMS-based imaging in the OASYS project is very extensive, and we have broken down some of the use cases below: Bioscience microskopy Use case microskopy Life science Observation of living cells Process mapping Impact research Biomarkers Catalysis Interactions in living organisms Structure of entire organs Tumor research Fluorescence microscopy Use case fluorescence Biochemistry and medicine morphological investigations analyses of measured values in the nanometer range processes of various cultures in real time fast and detailed detection of bright, colored fluorescence Deep Tissue Use case deep tissue Visualization of complex structures Tumor observationImmune system reactions Work on the object Labeling of mesenchymal stem cellssubcutaneous injection Endoscopic imaging Use cases endoscopic Organ examination StomachIntestineBile Pancreas Geo space satellites Use case geo space satellites Earth Observation with SLM Improved spatial resolutionCorrection of atmospheric distortions Exoplanet exploration (Planetary Exploration) Analysis of spectral data Space Science Space medicineAstrobiology Quantum-technology Use case quantum-technology Quantum communication with SLM cryptography secure communikation Lab experiments holography Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. We design the future of sensor technology with you! Do you have an idea for an application with intelligent sensor technology, but don’t know how it could be implemented? Take advantage of our expertise and arrange a free, no-obligation meeting with our project team. appointment request Veröffentlichungen DOI:  White Paper Cluster hyperspectral imaging All Work /project A1 hyperspectral ultra compact AI camera A2 spectrometer-free hyperspectral raman imaging A3 silicon compatible detectors for object recognition Cluster optical imaging in the biosciences

A3 silicon compatible detectors for object recognition

By admin

Diese Seite befindet sich noch im Aufbau. A3 silicon compatible detectors for object recognition Imaging processes are a standard tool for the detection and identification of objects in many automated industrial processes. Without the ability of this technology to assess objects in terms of their spatial position, quality or design, many processes in production, for example, could not be carried out at the desired speed. Agricultural robots are a challenging example of this. Changing weather conditions, a freely accessible work area that needs to be secured and challenging, frequently moving objects that need to be identified place high demands on the sensor technology. The key component in the development of autonomous machines such as service robots or agricultural drones are new meta-detectors for imaging, which can obtain additional information from or about the environment over and above the existing methods for evaluation. Meta-material sensors can not only direct and reflect light through miniaturized magnifying glasses and mirrors, but also stretch, stretch, distort and manipulate it in other ways so that different superimposed information in the light can be analyzed and viewed separately. The most important key factor for future smart automation is designed, newly developed metasurfaces and metamaterials, as well as various processes in the field of artificial intelligence. Research & development for different use cases The OASYS project Silicon-compatible detectors for object identification is developing the innovative integration of metasurfaces and AI in detector systems with an extended spectral range as well as suitable technologies and design processes for application-specific implementation. Artificial metamaterials such as “perfect” meta-lenses or materials with a negative refractive index are particularly interesting in the field of sensors and microscopy as well as for space telescopes, as they increase resolution, selection according to certain properties of light and efficiency many times over. Photonic metamaterials have the potential to revolutionize optics and photonics in a similar way as silicon technology once changed microelectronics. artificially produced metasurface codes and algorithems for AI data processing Drone with camera module for object detection The further development of automation towards autonomous machines is largely determined by the performance of imaging detection systems as well as data sets and decision-making algorithms of so-called artificial intelligence. Application scenarios such as strawberry-picking robots, autonomous mining machines or space robotics, more powerful telescopes, life-saving drones and improved (bio)medical devices, health monitoring of plants in the agricultural sector or general environmental diagnostics can be improved and rethought with more sensitive and designed metamaterials. Data processing and evaluation tailored to the application then further increases the effectiveness of the overall system. Detectors with metamaterials can also be used profitably in quantum communication. The range of applications for detectors designed in the OASYS project in the field of object identification is very extensive; we have broken down some of the use cases below: Object recognition & agriculture Use case object identification Agriculture Identification of fruits Correlation and measurement for best harvesting time Disease detection Detection of weeds between crops Assignment of objects to defined classes Object counting Plant health Use case plant health Agriculture and greenhouses Health status and phenotyping overview Early disease detection Individual detection of nutrient and water deficiencies in plants Determination of fertilizer requirements Seed monitoring autonome robots & automatism Use Cases autonome Roboter Robotics in Agriculture Fruit Detection Weed Detection between Crops Robotics in Animal Husbandry Animal Detection Pasture Monitoring Automotive Detection of Fixed Objects Detection of Humans (Bio-)Medicine sensors Use case detectors imaging for medical uses better diagnoses with AI object and tissue recognission hyperfine imaging with metamaterials Metamaterials Use case metamaterials Nanostructures for sensor integration Detection of polarization propertiesspectral analysisphotonic filtersmeta-lensesmeta-surfacesmaterial-specific absorption effects Space & quantum communication Use case space metamaterials for telescopes hyperfine imaging with metamaterials polarison-oriented light detection in infrared detailed investigation of moving near-Earth objects Quantum communication Quantum-Metamaterials Quantum signal processing Quantum detectors single pixel imaging Agrarwirtschaft Use Case Agrar … Automatisierung Use Cases Automatisierung Quantenkommunikation Use Cases Quantenkommunikation Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. We design the future of sensor technology with you! Do you have an idea for an application with intelligent sensor technology, but don’t know how it could be implemented? Take advantage of our expertise and arrange a free, no-obligation meeting with our project team. appointment request Veröffentlichungen DOI:  White Paper Cluster hyperspectral imaging All Work /project A1 hyperspectral ultra compact AI camera A2 spectrometer-free hyperspectral raman imaging A3 silicon compatible detectors for object recognition Cluster optical imaging in biosciences

A2 spectrometer-free hyperspectral raman imaging

By admin

Spectrometer-free hyperspectral Raman imaging sensor technology Hyperspectral imaging (HSI) can make the invisible visible. With the special method SERDS (shifted excitation Raman difference spectroscopy), for example, non-destructive real-time characterization of biological tissue can be carried out. Raman signals provide precise information that is not only molecule-specific, but also unique to the type of sample under investigation. For biological materials such as proteins, carbohydrates, lipids, nucleic acids and deoxyribonucleic acids (DNA), the molecular structures are similar but different in detail. Due to their biological function in the body, these functional substances reveal different disease patterns, tissue types and pathogens. Raman spectra can be used, for example, to clearly detect the presence of cholesterol, cancer cells or biomarkers and make them locally visible. Research & development for different use cases Substance-specific analysis of samples with a heterogeneous distribution of substances in liquids and solids can be realized with Raman differential spectroscopy. In soil samples, the nutrient content as well as pollutants and the composition of the rock components can be analyzed. Carotenoid detection can be used to determine the success of chemotherapy and the general health and nutritional status of a patient. light transports informations non-destructive characterization of cells mineral rock of unknown composition The applications of the OASYS project are very different; we have broken down some examples of use cases below: Recycling Use Case Recycling sorting waste  Plastic Black plastics Textilies Dermatology Use Case Dematologie Skin examinations Health status Chemotherapy success Nutritional analysis Mineral analysis Use Case Gesteinsanalyse Mining Composition of minerals and rocks Mineralogy Authenticity of gemstones Bioengineering Use Case Bioengineering   Detection of miRNA Biomarkers in blood and tissues  Detection of diseases Plant monitoring Use Case plant monitoring Agriculture Plant growing parameters Pathogenes Plant health parameters Environmental influences Monitoring Soil analysis Use Case soil analysis Agriculture soils Nutrient content Harmful substances and contaminants Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. We design the future of sensor technology with you! Do you have an idea for an application with intelligent sensor technology, but don’t know how it could be implemented? Take advantage of our expertise and arrange a free, no-obligation meeting with our project team. appointment request Veröffentlichungen DOI:  White Paper Cluster hyperspektral imaging All Work /project A1 hyperspectral ultra compact AI camera A2 spectrometer-free hyperspectral raman imaging A3 silicon compatible detectors for object recognition Cluster optical imaging in biosciences All Work /project A1 hyperspectral ultra compact AI camera A2 spectrometer-free hyperspectral raman imaging A3 silicon compatible detectors for object recognition

A1 hyperspectral ultra compact AI camera

By admin

ultra compact hyperspectral AI camera Hyperspectral imaging (HSI) can make the invisible visible. We cannot see bruises in apples with our eyes, but in the hyperspectral range these spots become clearly visible, so that the suitability for storage of precious foodstuffs can be precisely determined, which has a positive effect on current food waste. A very small, efficient, energy-saving spectrometer system forms the heart of our hyper-spectral camera. All selected image information are evaluated using artificial intelligence and can therefore perform a wide range of tasks better than the human eye. This allows us to measure more precisely und make accurate decisions with the help of technology . normal viewhyperspectral Die Ultrakompakte intelligente hyperspektrale Kamera Hyperspektrale Bildgebung (engl. Hyperspectral Imaging, HSI) kann Unsichtbares sichtbar machen. Druckstellen in Äpfeln können wir mit unseren Augen nicht wahrnehmen, im hyperspektralen Bereich werden diese Stellen jedoch deutlich erkennbar, so dass die Lagertauglichkeit von kostbaren Lebensmitteln präzise bestimmbar ist, was der aktuellen Lebensmittelverschwendung positiv entgegen wirkt. Ein kleine, effizientes, energiesparendes Spektrometer-System bildet das Herzstück unserer hyperspektralen Kamera. Mit künstlicher Intelligenz werden die ausgewählten Bildinformationen ausgewertet und können so im Anwendungsfall vielfältige Aufgaben besser meistern als unser menschliche Auge. research & development for use cases Numerous decision-making processes and workflows in our modern lives require precise knowledge of the specific physical properties of very specific objects, i.e. their chemical composition or structural characteristics, in order to be able to assign unknown soiled textiles to the appropriate washing program, for example. Hyperspectral camera systems with artificial intelligence will provide us with smarter, faster and more accurate results in many areas in the future. spectral colors of light RGB – red green blue colorplay and dispersion on a leaf absorption spectra of visible light Every chemical compound leaves a so-called fingerprint (resonant wavelengths) in the visible and infrared spectrum, which can be read out precisely, accurately and quickly using an intelligent spectrometer. In the hyperspectral method, hundreds of distinctive lines are measured simultaneously. This means that an indeterminate stain on textiles can be quickly identified, as can the textile composition. Even counterfeits of branded clothing can be detected using this method based on the material comparison. The range of applications for the ultra-compact intelligent hyperspectral camera of the OASYS project is very extensive, we have broken down some use cases below: textile industries use case textile industry Recycling Textile sorting according to fabric type, e.g. blended fabrics, cotton, polyester, etc. Industrial laundry Textile soiling type and washing temperature recommendation food quality use case food quality Sorting and inspection according to ripenessDetection of bruises and damage without cuttingSorting out impurities in grain Detection of empty / rotten nutsInspection of packaging and film weld seams recycling use case recycling Waste sorting Determination of different types of plastic and mixtures Quality determination and composition of plastic types plagiarism use cases plagiarism Verification Branded product or counterfeit Customs Smuggled goods Product piracy agriculture use case agriculture Spectrometer for plantations and field work Pest infestationPlant healthNutrient content Spectrometers for agriculture Precise fertilizer requirementsWater supply industrial production use case industrial production Support of production processes Monitoring of individual process sectionsReal-time recordingQuality controlDelivery controlRapid test of ingredientsFilling quantity of packagingChemical analysis Der neuartige Systemansatz im OASYS Leitprojekt A1 bestehend aus einer intelligenten Kombination von Bildaufnahme mit kostengünstigen Siliziumdetektoren – spektral empfindlich bis etwa einem Mikrometer – und gezielten Punktmessungen im nahen Infrarot ab einem Mikrometer, gesteuert durch eine KI-unterstützte Bildauswertung und zweidimensionalen Bildpunktauswahl – ermöglicht durch MEMS-Spiegel – ergeben die Geometrie und die relevanten chemischen Informationen.Diese Kombination aus effizienter Datenaufnahme und örtlicher Vorverarbeitung “Egde-Computing” ermöglicht extrem kompakte und energieeffiziente Systeme.  In Europa fallen jährlich 7,5 Mio. Tonnen Textilmüll an, von denen weniger als ein Prozent recycelt werden, obwohl bereits bis 2030 Recycelraten von 18 – 26 % als realistisch eingeschätzt werden. (McKinsey) Use Cases Textilbereich Recycling Textilsortierung nach Stoffarten wie z.B. Mischgewebe, Baumwolle, Polyester etc. Industriewäsche Textilverschmutzungsart und Waschtemperaturempfehlung Use Cases Plagiaterkennung   7% bis 10% des Welthandels sind Fälschungen und Plagiate. Dadurch entsteht ein geschätzter volkswirtschaftlicher Schaden in Höhe von 200 bis 300 Mrd. Euro pro Jahr und mehr als 200 000 Arbeitsplätze in der EU werden vernichtet. (Europäische Komission) Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. Use Cases Recycling Abfallsortierierung Bestimmung von verschiednen Plastiksorten und gemischen   Jedes Jahr fallen über 2 Mrd Tonnen Abfall in der EU an. Um die Abfallmenge und ihre Auswirkungen auf die Umwelt zu verringern, hat die EU ehrgeizige Ziele für das Recycling festgelegt, um den Übergang zu einem nachhaltigeren Modell, der Kreislaufwirtschaft, zu fördern. (EU Parlament) Qualität … Use Cases Qualitätskontrolle Industrie und Chemie Überwachung von Prozessschnitten Plagiatserkennung Schnelltest von Inhaltsstoffen Füllmenge von Verpackungen Produktionsüberwachung Chemische Analyse Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. Use Cases Agrar Drohnen für Plantagen und Feldarbeit  Schädlingsbefall  Pflanzengesundheit   Maschinen und Roboter für die Landwirtschaft  Präziser Düngemittelbedarf  Wasserversorgung Ein Mangel an Arbeitskräften und Saisonarbeitern in der Landwirtschaft ist schon heute spürbar. Fast jeder zehnte landwirtschaftliche Betrieb in Deutschland verwendet bereits Drohnen. (2018, Digitalverbands Bitkom) Use Cases Lebensmittelqualität präzise und schnelle Sortierung nach Reifegrad Detektion von Drückstellen und Beschädigungen ohne aufschneiden Aussortieren von Verunreinigungen in Getreide  Erkennen von leeren / fauligen Nüssen Ziel ist in Deutschland bis 2030 vermeidbare Lebensmittelabfälle bei Verbrauchern und im Einzelhandel zu halbieren, auch bei der Nachernte, in der Produktion und bei der Lieferung ist eine Verminderung wichtig. (Bundesanstalt für Landwirtschaft und Ernährung) Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall…