B2 optoacoustic sensors

By admin

Diese Seite befindet sich noch im Aufbau. optoacoustic sensor technology Optoacoustic imaging (OAI) has developed steadily in recent years and is similar to pure ultrasound imaging. In the latter, a probe sends sound waves into the body, which are reflected by various types of tissue in a special way. Sensors in the probe detect the reflected sound waves, from which a structure of the tissue inside the body is mapped. Miniaturized ultrasonic transducers manufactured using semiconductor technology are also known as CMUTs (capacitive micromachined ultrasonic transducers). In optoacoustic imaging, on the other hand, extremely fast laser pulses are sent into the tissue, where they are absorbed and converted into ultrasound waves. These can then be detected in the same way as with ultrasound imaging and converted into images using variousalgorithms. Research & development for use cases Optical imaging methods generally do not allow a high penetration or imaging depth due to light scattering in the tissue. Ultrasound-based imaging methods can penetrate deeper into the tissue, but have low contrast in acoustically homogeneous tissue types. Ultrasound is preferred because it has no side effects, is painless and, unlike X-rays, is completely risk-free. Optoacoustic imaging combines the advantages of both techniques. The absorbing structures in the tissue (e.g. the smallest vessels) are heated locally by the ultrashort light pulses, which leads to a temporary minimal expansion of the tissue at certain points (thermoelastic expansion). This creates measurable pressure waves in the ultrasound range, which are detected by sensors. The cell structures are not damaged, the procedure is painless and risk-free. For imaging, there is an advantageous combination of light absorption contrasting and the improved ratio of resolution to increased ultrasound-induced penetration depth. Artificial intelligence is used for further processing and improved evaluation of the data. cancer cells with internal nuclei image of different tissue types model of tissue layers with vessel walls The range of applications for optoacoustic sensor technology from the OASYS project is very extensive, for example as an intraoperative method to distinguish healthy tissue structures from tumors in the early detection of cancer, as well as at follow-up appointments or during surgery. Vascular changes can nowadays also be detected with high-resolution ultrasound, so that stroke risks and heart attacks can be recognized at an early stage. We have broken down some of the use cases in more detail below: blood vessel diagnostics use case bood vessel diagnostics Function monitoring for DiabetesAge-related disordersPrevious surgeryDiseases of the vascular system Circulatory disorders e.g. Blood vessels that are too wide or too narrowVaricose veinsCardiological abnormalitiesEye dysfunctionHeadaches and migraines cancer early detection use case cancer detection Early detection Thyroid cancerSkin melanomaLymph node or lymph gland cancerBreast cancerProstate cancerIn the renal systemOn the ovaries organ diagnostic use case organ diagnostic Monitoring of organ function LiverKidneysSpleenPancreasGallbladderSkinHeart Inflammatory diseases of the digestive tract e.g. Morbus Crohn, disease of the neuromuscular system Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. We design the future of sensor technology with you! Do you have an idea for an application with intelligent sensor technology, but don’t know how it could be implemented? Take advantage of our expertise and arrange a free, no-obligation meeting with our project team. appointment request Veröffentlichungen DOI:  White Paper Cluster hyperspektral imaging All Work /project A1 hyperspectral ultra compact AI camera A2 spectrometer-free hyperspectral raman imaging A3 silicon compatible detectors for object recognition Cluster optical imaging in biosciences All Work /project The project B1 imaging in scattering media based on MEMS technology B2 optoacoustic sensors

B1 imaging in scattering media based on MEMS technology

By admin

Diese Seite befindet sich noch im Aufbau. hyperfine imaging in scattering media based on MEMS technology Imaging in and through scattering media is of immediate interest in biomedical research through to everyday clinical practice. In living tissue, the scattering and absorption of light by various molecules such as hemoglobin, pigments or water results in signal attenuation and a limited imaging depth caused by the distortion of the amplitude and phase of the (light) wave. Light scattering works in a similar way with a pane of frosted glass, which obstructs and distorts our vision (see image). Technologically advanced light modulators (SLM) can correct the light distortion and restore the original image. An example of a biomedical application for image acquisition using scattering media is deep tissue imaging. In this process, optical information is obtained from deep tissue layers, normal and diseased tissue can be distinguished, as can cell types, biomarker profiles, biological structures and processes in living organisms. scattering media viewlight modulation with SLM Research & development for different use cases In the medical field, endoscopy is one of the most important imaging methods for human medical diagnostics and for carrying out minimally invasive surgical procedures. Endoscopy means “looking at the inside”. The use of modern optical procedures and digitalization have been driving the technological development of medical endoscopy for many years. Even the smallest findings in the millimetre range can be detected and characterized thanks to the high image resolution. The use of light of different wavelengths helps to obtain important information on the vascular supply of the mucous membranes, which was otherwise only possible through surgery with tissue removal. Endoscopic micro-optics also allow a digital view into tiny duct systems (bile duct, pancreatic duct). light with different wavelength deep tissue image SLM spatial light modulator As described above, a fundamental requirement for imaging in and through scattering media is to control the intensity and phase of the light as quickly and precisely as possible. Our key components for this are so-called spatial light modulators (SLM), programmable components that are used to adjust the optical wavefront of the light Figure right. In combination with endoscopes, they allow an even more precise view behind vessel walls and into tissue layers without damaging or injuring them. The range of applications for MEMS-based imaging in the OASYS project is very extensive, and we have broken down some of the use cases below: Bioscience microskopy Use case microskopy Life science Observation of living cells Process mapping Impact research Biomarkers Catalysis Interactions in living organisms Structure of entire organs Tumor research Fluorescence microscopy Use case fluorescence Biochemistry and medicine morphological investigations analyses of measured values in the nanometer range processes of various cultures in real time fast and detailed detection of bright, colored fluorescence Deep Tissue Use case deep tissue Visualization of complex structures Tumor observationImmune system reactions Work on the object Labeling of mesenchymal stem cellssubcutaneous injection Endoscopic imaging Use cases endoscopic Organ examination StomachIntestineBile Pancreas Geo space satellites Use case geo space satellites Earth Observation with SLM Improved spatial resolutionCorrection of atmospheric distortions Exoplanet exploration (Planetary Exploration) Analysis of spectral data Space Science Space medicineAstrobiology Quantum-technology Use case quantum-technology Quantum communication with SLM cryptography secure communikation Lab experiments holography Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. We design the future of sensor technology with you! Do you have an idea for an application with intelligent sensor technology, but don’t know how it could be implemented? Take advantage of our expertise and arrange a free, no-obligation meeting with our project team. appointment request Veröffentlichungen DOI:  White Paper Cluster hyperspectral imaging All Work /project A1 hyperspectral ultra compact AI camera A2 spectrometer-free hyperspectral raman imaging A3 silicon compatible detectors for object recognition Cluster optical imaging in the biosciences All Work /project The project B1 imaging in scattering media based on MEMS technology B2 optoacoustic sensors

A3 silicon compatible detectors for object recognition

By admin

Diese Seite befindet sich noch im Aufbau. A3 silicon compatible detectors for object recognition Imaging processes are a standard tool for the detection and identification of objects in many automated industrial processes. Without the ability of this technology to assess objects in terms of their spatial position, quality or design, many processes in production, for example, could not be carried out at the desired speed. Agricultural robots are a challenging example of this. Changing weather conditions, a freely accessible work area that needs to be secured and challenging, frequently moving objects that need to be identified place high demands on the sensor technology. The key component in the development of autonomous machines such as service robots or agricultural drones are new meta-detectors for imaging, which can obtain additional information from or about the environment over and above the existing methods for evaluation. Meta-material sensors can not only direct and reflect light through miniaturized magnifying glasses and mirrors, but also stretch, stretch, distort and manipulate it in other ways so that different superimposed information in the light can be analyzed and viewed separately. The most important key factor for future smart automation is designed, newly developed metasurfaces and metamaterials, as well as various processes in the field of artificial intelligence. Research & development for different use cases The OASYS project Silicon-compatible detectors for object identification is developing the innovative integration of metasurfaces and AI in detector systems with an extended spectral range as well as suitable technologies and design processes for application-specific implementation. Artificial metamaterials such as “perfect” meta-lenses or materials with a negative refractive index are particularly interesting in the field of sensors and microscopy as well as for space telescopes, as they increase resolution, selection according to certain properties of light and efficiency many times over. Photonic metamaterials have the potential to revolutionize optics and photonics in a similar way as silicon technology once changed microelectronics. artificially produced metasurface codes and algorithems for AI data processing Drone with camera module for object detection The further development of automation towards autonomous machines is largely determined by the performance of imaging detection systems as well as data sets and decision-making algorithms of so-called artificial intelligence. Application scenarios such as strawberry-picking robots, autonomous mining machines or space robotics, more powerful telescopes, life-saving drones and improved (bio)medical devices, health monitoring of plants in the agricultural sector or general environmental diagnostics can be improved and rethought with more sensitive and designed metamaterials. Data processing and evaluation tailored to the application then further increases the effectiveness of the overall system. Detectors with metamaterials can also be used profitably in quantum communication. The range of applications for detectors designed in the OASYS project in the field of object identification is very extensive; we have broken down some of the use cases below: Object recognition & agriculture Use case object identification Agriculture Identification of fruits Correlation and measurement for best harvesting time Disease detection Detection of weeds between crops Assignment of objects to defined classes Object counting Plant health Use case plant health Agriculture and greenhouses Health status and phenotyping overview Early disease detection Individual detection of nutrient and water deficiencies in plants Determination of fertilizer requirements Seed monitoring autonome robots & automatism Use Cases autonome Roboter Robotics in Agriculture Fruit Detection Weed Detection between Crops Robotics in Animal Husbandry Animal Detection Pasture Monitoring Automotive Detection of Fixed Objects Detection of Humans (Bio-)Medicine sensors Use case detectors imaging for medical uses better diagnoses with AI object and tissue recognission hyperfine imaging with metamaterials Metamaterials Use case metamaterials Nanostructures for sensor integration Detection of polarization propertiesspectral analysisphotonic filtersmeta-lensesmeta-surfacesmaterial-specific absorption effects Space & quantum communication Use case space metamaterials for telescopes hyperfine imaging with metamaterials polarison-oriented light detection in infrared detailed investigation of moving near-Earth objects Quantum communication Quantum-Metamaterials Quantum signal processing Quantum detectors single pixel imaging Agrarwirtschaft Use Case Agrar … Automatisierung Use Cases Automatisierung Quantenkommunikation Use Cases Quantenkommunikation Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. We design the future of sensor technology with you! Do you have an idea for an application with intelligent sensor technology, but don’t know how it could be implemented? Take advantage of our expertise and arrange a free, no-obligation meeting with our project team. appointment request Veröffentlichungen DOI:  White Paper Cluster hyperspectral imaging All Work /project A1 hyperspectral ultra compact AI camera A2 spectrometer-free hyperspectral raman imaging A3 silicon compatible detectors for object recognition Cluster optical imaging in biosciences

A2 spectrometer-free hyperspectral raman imaging

By admin

Spectrometer-free hyperspectral Raman imaging sensor technology Hyperspectral imaging (HSI) can make the invisible visible. With the special method SERDS (shifted excitation Raman difference spectroscopy), for example, non-destructive real-time characterization of biological tissue can be carried out. Raman signals provide precise information that is not only molecule-specific, but also unique to the type of sample under investigation. For biological materials such as proteins, carbohydrates, lipids, nucleic acids and deoxyribonucleic acids (DNA), the molecular structures are similar but different in detail. Due to their biological function in the body, these functional substances reveal different disease patterns, tissue types and pathogens. Raman spectra can be used, for example, to clearly detect the presence of cholesterol, cancer cells or biomarkers and make them locally visible. Research & development for different use cases Substance-specific analysis of samples with a heterogeneous distribution of substances in liquids and solids can be realized with Raman differential spectroscopy. In soil samples, the nutrient content as well as pollutants and the composition of the rock components can be analyzed. Carotenoid detection can be used to determine the success of chemotherapy and the general health and nutritional status of a patient. light transports informations non-destructive characterization of cells mineral rock of unknown composition The applications of the OASYS project are very different; we have broken down some examples of use cases below: Recycling Use Case Recycling sorting waste  Plastic Black plastics Textilies Dermatology Use Case Dematologie Skin examinations Health status Chemotherapy success Nutritional analysis Mineral analysis Use Case Gesteinsanalyse Mining Composition of minerals and rocks Mineralogy Authenticity of gemstones Bioengineering Use Case Bioengineering   Detection of miRNA Biomarkers in blood and tissues  Detection of diseases Plant monitoring Use Case plant monitoring Agriculture Plant growing parameters Pathogenes Plant health parameters Environmental influences Monitoring Soil analysis Use Case soil analysis Agriculture soils Nutrient content Harmful substances and contaminants Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. We design the future of sensor technology with you! Do you have an idea for an application with intelligent sensor technology, but don’t know how it could be implemented? Take advantage of our expertise and arrange a free, no-obligation meeting with our project team. appointment request Veröffentlichungen DOI:  White Paper Cluster hyperspektral imaging All Work /project A1 hyperspectral ultra compact AI camera A2 spectrometer-free hyperspectral raman imaging A3 silicon compatible detectors for object recognition Cluster optical imaging in biosciences All Work /project The project B1 imaging in scattering media based on MEMS technology B2 optoacoustic sensors

A1 hyperspectral ultra compact AI camera

By admin

ultra compact hyperspectral AI camera Hyperspectral imaging (HSI) can make the invisible visible. We cannot see bruises in apples with our eyes, but in the hyperspectral range these spots become clearly visible, so that the suitability for storage of precious foodstuffs can be precisely determined, which has a positive effect on current food waste. A very small, efficient, energy-saving spectrometer system forms the heart of our hyper-spectral camera. All selected image information are evaluated using artificial intelligence and can therefore perform a wide range of tasks better than the human eye. This allows us to measure more precisely und make accurate decisions with the help of technology . normal viewhyperspectral Die Ultrakompakte intelligente hyperspektrale Kamera Hyperspektrale Bildgebung (engl. Hyperspectral Imaging, HSI) kann Unsichtbares sichtbar machen. Druckstellen in Äpfeln können wir mit unseren Augen nicht wahrnehmen, im hyperspektralen Bereich werden diese Stellen jedoch deutlich erkennbar, so dass die Lagertauglichkeit von kostbaren Lebensmitteln präzise bestimmbar ist, was der aktuellen Lebensmittelverschwendung positiv entgegen wirkt. Ein kleine, effizientes, energiesparendes Spektrometer-System bildet das Herzstück unserer hyperspektralen Kamera. Mit künstlicher Intelligenz werden die ausgewählten Bildinformationen ausgewertet und können so im Anwendungsfall vielfältige Aufgaben besser meistern als unser menschliche Auge. research & development for use cases Numerous decision-making processes and workflows in our modern lives require precise knowledge of the specific physical properties of very specific objects, i.e. their chemical composition or structural characteristics, in order to be able to assign unknown soiled textiles to the appropriate washing program, for example. Hyperspectral camera systems with artificial intelligence will provide us with smarter, faster and more accurate results in many areas in the future. spectral colors of light RGB – red green blue colorplay and dispersion on a leaf absorption spectra of visible light Every chemical compound leaves a so-called fingerprint (resonant wavelengths) in the visible and infrared spectrum, which can be read out precisely, accurately and quickly using an intelligent spectrometer. In the hyperspectral method, hundreds of distinctive lines are measured simultaneously. This means that an indeterminate stain on textiles can be quickly identified, as can the textile composition. Even counterfeits of branded clothing can be detected using this method based on the material comparison. The range of applications for the ultra-compact intelligent hyperspectral camera of the OASYS project is very extensive, we have broken down some use cases below: textile industries use case textile industry Recycling Textile sorting according to fabric type, e.g. blended fabrics, cotton, polyester, etc. Industrial laundry Textile soiling type and washing temperature recommendation food quality use case food quality Sorting and inspection according to ripenessDetection of bruises and damage without cuttingSorting out impurities in grain Detection of empty / rotten nutsInspection of packaging and film weld seams recycling use case recycling Waste sorting Determination of different types of plastic and mixtures Quality determination and composition of plastic types plagiarism use cases plagiarism Verification Branded product or counterfeit Customs Smuggled goods Product piracy agriculture use case agriculture Spectrometer for plantations and field work Pest infestationPlant healthNutrient content Spectrometers for agriculture Precise fertilizer requirementsWater supply industrial production use case industrial production Support of production processes Monitoring of individual process sectionsReal-time recordingQuality controlDelivery controlRapid test of ingredientsFilling quantity of packagingChemical analysis Der neuartige Systemansatz im OASYS Leitprojekt A1 bestehend aus einer intelligenten Kombination von Bildaufnahme mit kostengünstigen Siliziumdetektoren – spektral empfindlich bis etwa einem Mikrometer – und gezielten Punktmessungen im nahen Infrarot ab einem Mikrometer, gesteuert durch eine KI-unterstützte Bildauswertung und zweidimensionalen Bildpunktauswahl – ermöglicht durch MEMS-Spiegel – ergeben die Geometrie und die relevanten chemischen Informationen.Diese Kombination aus effizienter Datenaufnahme und örtlicher Vorverarbeitung “Egde-Computing” ermöglicht extrem kompakte und energieeffiziente Systeme.  In Europa fallen jährlich 7,5 Mio. Tonnen Textilmüll an, von denen weniger als ein Prozent recycelt werden, obwohl bereits bis 2030 Recycelraten von 18 – 26 % als realistisch eingeschätzt werden. (McKinsey) Use Cases Textilbereich Recycling Textilsortierung nach Stoffarten wie z.B. Mischgewebe, Baumwolle, Polyester etc. Industriewäsche Textilverschmutzungsart und Waschtemperaturempfehlung Use Cases Plagiaterkennung   7% bis 10% des Welthandels sind Fälschungen und Plagiate. Dadurch entsteht ein geschätzter volkswirtschaftlicher Schaden in Höhe von 200 bis 300 Mrd. Euro pro Jahr und mehr als 200 000 Arbeitsplätze in der EU werden vernichtet. (Europäische Komission) Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. Use Cases Recycling Abfallsortierierung Bestimmung von verschiednen Plastiksorten und gemischen   Jedes Jahr fallen über 2 Mrd Tonnen Abfall in der EU an. Um die Abfallmenge und ihre Auswirkungen auf die Umwelt zu verringern, hat die EU ehrgeizige Ziele für das Recycling festgelegt, um den Übergang zu einem nachhaltigeren Modell, der Kreislaufwirtschaft, zu fördern. (EU Parlament) Qualität … Use Cases Qualitätskontrolle Industrie und Chemie Überwachung von Prozessschnitten Plagiatserkennung Schnelltest von Inhaltsstoffen Füllmenge von Verpackungen Produktionsüberwachung Chemische Analyse Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall und führen einen kostenlosen Technologietransfer-Check durch. Bitte beachten Sie, dass diese Vorab-Einschätzung kein Ersatz für eine Machbarkeitsstudie darstellt. Use Cases Agrar Drohnen für Plantagen und Feldarbeit  Schädlingsbefall  Pflanzengesundheit   Maschinen und Roboter für die Landwirtschaft  Präziser Düngemittelbedarf  Wasserversorgung Ein Mangel an Arbeitskräften und Saisonarbeitern in der Landwirtschaft ist schon heute spürbar. Fast jeder zehnte landwirtschaftliche Betrieb in Deutschland verwendet bereits Drohnen. (2018, Digitalverbands Bitkom) Use Cases Lebensmittelqualität präzise und schnelle Sortierung nach Reifegrad Detektion von Drückstellen und Beschädigungen ohne aufschneiden Aussortieren von Verunreinigungen in Getreide  Erkennen von leeren / fauligen Nüssen Ziel ist in Deutschland bis 2030 vermeidbare Lebensmittelabfälle bei Verbrauchern und im Einzelhandel zu halbieren, auch bei der Nachernte, in der Produktion und bei der Lieferung ist eine Verminderung wichtig. (Bundesanstalt für Landwirtschaft und Ernährung) Haben Sie Fragen zur technischen Umsetzung in Ihrem Unternehmen, suchen Sie nach einer speziellen Lösung für ein konkretes Anwendungsproblem, dann kontaktieren Sie uns. Gerne evaluieren wir mit Ihnen vorab Ihren Anwendungsfall…